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Abstract

In this dissertation we prove the Van de Ven theorem: if X is a closed subvariety of Pn. The

short exact sequence

0 −! TX −! TPn |X −! NX|Pn −! 0

splits if and only if X is linear.

We will recall standard results about algebraic groups, following [Bor91], before tackling

the Matusmura-Oort and Borel-Remmert theorems. Finally, we will prove the Van de Ven

problem by following the work of Mustaţă and Popa.

vi



0Introduction

It is well known that for a closed embedding of smooth C-varieties X ↪! Y the tangent
sequence

0 −! TX −! TY |X −! NX|Y −! 0 (⋆)

is short exact. Here TX and NX|Y are the tangent and normal bundles of X in Y and TY |X

is the restricted tangent bundle of Y to X. A natural next step is to ask when (⋆) splits, when

is TY |X isomorphic to TX ⊕ NX|Y? In the mid-twentieth century Van de Ven in [Ven58]

proved the following result.

Theorem 0.0.1 (The Van de Ven Theorem for Pn
). For Y = Pn, if (⋆) splits then X is a

linear subvariety of Y.

Morrow and Rossi gave a complex-geometric proof in [MR78] by explicitly construct-

ing a holomorphic retraction from a neighbourhood of X in Pn
to X, together with the

following corollary of Bézout’s theorem:

Corollary 0.0.2. If L is a linear subspace of Pn which intersects X transversally in the

non-empty linear space X ∩ L. Then X must be a linear subspace of Pn.

Alternatively, by dualising (⋆), we obtain the cotangent sequence

0 −! N ∨
X|Y −! Ω1

Y |X −! Ω1
X −! 0. (⋆⋆)

Of course, (⋆⋆) splits if and only if (⋆) does. Simons showed in 1971 the following result

Theorem 0.0.3 ([Sim71]). IfX is linearly normal inPn and the restricted cotangent bundle

ΩPn |X splits, then X is a rational curve.

One decade later Laksov presented a simplified version of Simons’s proof and showed

that his result implies the Van de Ven theorem. In 1996 Mustaţă and Popa found a similar

proof by studying the conditions that the first infinitesimal neighbourhood X(1)
of X,

which is the proof we present.

Before tackling Van de Ven, we need a result by Borel and Remmert ([BR62]), the

Borel-Remmert decomposition of a projective homogeneous variety X.

1
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Theorem 0.0.4. If X is a projective homogeneous variety then X decomposes into

X ∼= A×G/P

where A is an abelian variety and G/P is the quotient of an algebraic group G by a parabolic

subgroup P yielding a rational, homogeneous and projective variety.

The proof of Borel-Remmert has two prerequisits. Firstly, we must understand what

it means for a variety to be of the form G/P. This is classic theory treated well in Borel’s

famous book [Bor91]. We cover the basics of algebraic groups and build up to our first key

theorem

Theorem 0.0.5. For a connected affine algebraic group G, G/P is projective if and only if P

is a parabolic subgroup.

The second preliminary to Borel-Remmert is the Matsumura-Oort theorem ([MO67])

published in 1967. Published is much greater generality than we need, we do not treat the

proof itself but instead prove its application to our scenario, in particular we show

Theorem 0.0.6. If X is a connected projective variety then Aut(X) is a connected algebraic

group whose Lie algebra is Γ(X,TX).

In Chapter 3 we use Matsumura-Oort to show that a connected projective variety X is

homogeneous if and only if

opX : OX ⊗ Γ(X,TX) −! TX

is surjective. Here opX is a map of sheaves induced by the map of Lie algebras

opX : g −! Γ(X,TX).

Combining this with Chevalley’s structure theorem, we will arrive at a proof of the Borel-

Remmert theorem, before finally tackling the Van de Ven theorem for Pn
.



1Varieties and their Group

Structures

The goal of this chapter is to describe how we can endow a complex algebraic variety with a

group structure. We first introduce the notion of an algebraic group. When an algebraic

group G acts on morphically on a variety X, we call X a G-space. Our goal is to classify

precisely when quotients of these groups are projective or affine. Our main reference for

this chapter is [Bor91].

1.1 G-spaces

Before defining a G-spaces, we need some basic properties of algebraic groups.

Definition 1.1.1. An algebraic group is a variety X equipped with a group structure such

that the group operations

µ : G×G −! G i : G −! G

(g, h) 7−! gh g 7−! g−1

are morphisms of varieties. An algebraic group whose underlying variety is an affine variety

is said to be an affine algebraic group.

Definition 1.1.2. Let G be an algebraic group. We say that G is connected if the correspond-

ing variety is Zariski-connected. We will denote the connected component of e by G0.

Unless explicitly stated otherwise we may assume G is connected.

Ideally, we would like to work with abelian groups, however we cannot always do this,

so instead we work with soluble groups, which can be constructed from abelian groups.

Definition 1.1.3. Let G be a group and let [G,G] denote the commutator subgroup.

Define inductively G(0) = G,G(1) = [G,G], ..., G(n) = [G(n−1), G(n−1)]. Then the

descending series

G(0) ▷G(1) ▷ · · ·

is called the derived series of G. If there exists an m ∈ N such that G(m) = {e}, we say that

G is soluble.

3



1 Varieties and their Group Structures 4

Definition 1.1.4. Let G be an algebraic group. A variety X is a G-space if there exists a

group action

G× X −! X

(g, x) 7−! g.x

which is also a morphism of varieties. We say that G acts C-morphically, and we call G

a C-group. Let X and Y be G-spaces, A morphism of G-spaces is a morphism of varieties

φ : X ! Y such that φ(g.x) = g.φ(x) for all g ∈ G, x ∈ X, i.e. φ is a morphism of

varieties that is equivariant. A G-space X is said to be homogeneous if G acts transitively on

X. If G acts with only a dense orbit, we say X is almost homogeneous.

Example 1.1.5. The set of all n× n matrices over C, GLn(C), can be given the structure

of an affine variety. Let A = (xij) ∈ GLn(C). We identify GLn(C) with the closed set

{
(A,y) ∈ An2

xij
×At | det(A) = 1

}
= V(det(xij)t− 1) ⊆ An2 ×A.

Thus, GLn(C) is a linear algebraic group.

Definition 1.1.6. A Zariski-closed subgroup of GLn(C) is called a linear algebraic group.

Definition 1.1.7. Let V be a finite dimensional vector space over C. A morphism φ : G !

GL(V) which is also a group homomorphism is called a rational representation.

Definition 1.1.8. Let G = Spec(C[G]) be an affine algebraic group. Our goal with

this definition is to formulate the elements and structure of G in terms of C[G]. This is

sometimes known as an associative Hopf algebra.

Firstly, for the identity e ∈ G, we associate the evaluation map at e.

e : C[G] −! C

e(f) 7−! f(e).

‘

For comultiplication ∆ : G ! G×G, we have

∇ : C[G] −! C[G]
⊗
C

C[G]

such that if ∇(f) =
∑

gi ⊗ hi then f(xy) =
∑

gi(x)hi(y) where ∇ denotes the multi-

plication map.
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Finally, for S : G ! G we have the antipode map

S∗ : C[G] −! C[G]

(S∗f)(x) 7−! f
(
x−1

)
.

In order to formulate the group axioms, we first define the correspondence

ε : G −! G η : A −! A

x 7−! e η(x) 7−! f(e).

We call ε the counit and η the unit maps. The group axioms are thus expressed by the

commutativity of the following diagrams:

G×G×G G×G A⊗A⊗A A⊗A

(Ass)

G×G G A⊗A A

G G×G A A⊗A

(Id)

G×G G A⊗A A

G G×G A A⊗A

(Inv)

G×G G A⊗A A

∆×1

1×∆ ∆

∇⊗1

∆

1⊗∇

∇

∇

(ε,1)

(1,ε) 1
∆

(η,1)

∆

(1,η)

∇

∇

(S,1)

(1,S) ε
∆

(S∗,1)

∆

(1,S∗)

∇

∇

Note that the right hand diagrams are guaranteed to commute if the left hand ones do (and

vice-versa), as there is an equivalance of categories between the category of affine varieties

and the category of finitely generated reduced C-algebras.

Definition 1.1.9. Let G be an affine algebraic group which acts C-morphically on an affine

variety X via the map

α : G× X −! X

(g, x) 7−! g.x.
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Such an action makes X a Hopf algebra comodule. We have an induced pullback on coordi-

nate rings

α∗ : C[X] ! C[G]
⊗
C

C[X].

For g ∈ G we denote λg for the pullback of x 7! g−1x and ρg for the pullback of x 7! xg

we thus have linear automorphisms of C[X] given by

f 7−! λgf (λgf)(x) = f(g−1x)

f 7−! ρgf (ρgf)(x) = f(xg).

We call such automorphisms, respectively, left translations or right translations of functions

by g.

Borel uses these translations to prove the following important theorem:

Theorem 1.1.10. Let G b an affine C-group. Then G is isomorphic to a closed subgroup of

some GLn.

We now start building to our first important result; showing that for a linear algebraic

group G and closed subgroup H the quotient G/H is quasi-projective. We begin with some

easy results about oribts and stabilisers.

Lemma 1.1.11. Let X be a G-space. Then, for each x ∈ X, the stabiliser subgroup

Gx := {g ∈ G | g.x = x}

is closed.

Proof. Let φ : G ! X be the orbit map sending g to g.x. By the definition of G-spaces,

we know that φ is a closed map so φ−1(x) = Gx is closed.

Lemma 1.1.12. Let X be a G-space. Then, for all x ∈ X its orbit, G.x is open in its closure.

Proof. As G.x is a morphism of varieties, it is open in its closure.

Lemma 1.1.13 (Chevalley). Let G be a linear algebraic group and H a closed subgroup. There

is a rational representation α : G ! GLn(V) and a line L ⊆ V such that

H = {g ∈ G | α(g)L = L}

i.e. H is the stabiliser subgroup of L.
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Theorem 1.1.14. LetG be a linear algebraic group overC and letH ⩽ G be a closed subgroup.

Then G/H is a quasi-projective variety.

Proof. By Lemma 1.1.13, we can choose v to be the point in Pn
corresponding to the line

⟨v⟩ stabilised by H. Let X = G.v ⊆ Pn
k . By construction, X is a homogeneous G-space. We

have the induced surjective map

φ : G −! X

g 7−! g.v,

whose fibres are cosets of H. This further induces the bijective map φ : G/H ! X, which

gives G/H a variety structure. We know that G.v ⊆ Pn
k is closed and therefore projective.

Furthermore, by Lemma 1.1.12, G.v is open in G.v, therefore G.v is quasi-projective.

1.2 Parabolic and Borel Subgroups

Throughout this section, G is an algebraic group. We have two goals in this section. Firstly,

we wish to classify when quotients of G are projective or affine. Secondly, we will classify

parabolic subgroups of a simple algebraic group G, up to conjugacy.

Definition 1.2.1. A complete variety is a variety X such that for any variety Y, the projection

π : X× Y ! Y is a closed map.

Theorem 1.2.2. If X is projective then X is complete.

Proof. We start by reducing what we need to prove. Firstly, (from the definition of a

complete variety) if X is complete and X ′ ⊆ X is a closed subvariety, X ′
is complete. Hence,

we may let X = Pn. Furthermore, as closed is a local condition it suffices to prove the

theorem for each affine chart of Y. However, if Y ′ ⊆ Y is an affine subvariety X × Y ′
is

closed in X× Y, so it suffices to prove the theorem for Y = Am.

Let π be the projection map π : Pn ×Am ! Am. We need to show that if Z is closed

in Pn ×Am
then π(Z) is closed in Am. It is clear that for Z = ∅ that π(Z) is closed, so

we may assume that Z is non-empty. Now we can write Z as a finite union of closed Zi’s in

Pn ×Am
and show that each π(Zi) is closed. Hence, we can assume Z is irreducible.

Let A = k[x1, . . . , xm] and S = A[t0, . . . , tn]. By the definition of the Zariski topol-

ogy, the closed sets in Pn ×Am
are of the form V (I) where I is a homogeneous ideal in S.

So Z = V(I) is irreducible if and only if

√
I is prime. W.L.O.G we can take I prime. Note

that the restriction of π is dense in its image, so we can assume π is dominant.
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It remains to show the following: if y = (y1, ..., ym) ∈ Am
then there is an x = [x0 :

· · · : xn] ∈ Pn
such that (x, y) ∈ V(I). Let my be the maximal ideal in A corresponding

to the point y. Then J = myS+ I is a proper homogeneous ideal in S. The goal is to show

that V(J) ̸= ∅.

We argue by contradiction. Assume V(J) = ∅. Then, there exists a d such that the

set Sd ⊂ S of homogeneous polynomials in degree d lies in J. Let N = Sd

Sd∩I , which is a

finite A-module. Let (n1, ..., nr) be its generators. It follows from our assumptions that

N = myN. By Nakayama’s lemma, N = 0, which implies that V(J) ̸= ∅ contradicting

our assumption.

Definition 1.2.3. A closed subgroup P of G is parabolic if G/P is a complete variety.

Theorem 1.2.4. Let G be a linear algebraic group. A variety G/P is projective if and only if

P is parabolic.

Proof. The forwards direction follows from the definition of a parabolic subgroup and

Theorem 1.2.2. For the other direction, by Theorem 1.1.14 G/P is always quasi-projective.

As G/P is also complete, it is projective.

Now we know G/P is projective, we can work to more the more general case G/B

where B is Borel.

Definition 1.2.5. A subgroup B of G, which is maximal among the connected, soluble

subgroups is called a Borel subgroup.

Theorem 1.2.6 (Borel fixed point theorem). Let G be a connected, soluble, linear algebraic

group acting on a non-empty complete variety X. Then X has a fixed point under the action of

G.

Theorem 1.2.7. Let B be a Borel subgroup of a linear algebraic group. Then all Borel

subgroups are conjugate to B, and G/B is a projective variety.

Corollary 1.2.8. A closed subgroup P of G is parabolic if and only if P contains a Borel

subgroup.

Proof. If P contains a Borel subgroup B, then we have a surjective morphism G/B ! G/P

from a projective variety (Theorem 1.2.7), so G/P is projective. For the other direction, by

Theorem 1.2.6, B has a fixed point in G/P so some conjugate of B lies in P.
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From the previous corollary, we see that Borel subgroups are themselves parabolic and

are in fact the minimal parabolic subgroups.

Definition 1.2.9. A linear algebraic group over C is said to be reductive if it has a represen-

tation that has a finite kernel and is a direct sum of irreducible representations.

Theorem 1.2.10 (Matsushima’s Criterion). Let G be a reductive linear algebraic group and

let H be a closed subgroup, then G/H is affine if and only if H is reductive.

Proof. See [Bia63]

1.3 Interlude on Lie Algebras

We briefly discuss the associated Lie algebras of algebraic groups and their Borel/parabolic

subgroups to see how the classification of semisimple Lie algebras can be used to classify

parabolic subgroups.

Recall that for a semisimple Lie algebra g a choice of Cartan subalgebra h determines

the decomposition

g = h⊕
⊕
α∈R

gα

where R is the root system.

Definition 1.3.1. Let g be a semisimple Lie algebra and h a Cartan subalgebra. For each

ordering of the root system R = R+ ∪ R−
we associate the subalgebra

b = h⊕
⊕
α∈R+

gα

called the Borel subalgebra.

If G is algebraic group corresponding to the Lie algebra g and P a parabolic subgroup of

G, we can describe the Lie algebra as follows: Theorem 1.2.7 tells us that a Borel subgroup

B must live inside it. Hence, if T is a subset of the root system R, containing R+
we have a

subspace of g containing b

p = h⊕
⊕
α∈T

gα.

For p to be a subalgebra, we require T to be closed under addition. Moreover, we can see

that T must be generated by R+
and the negatives of a set Σ ⊆ R. Hence, for each Σ we

write T(Σ) for the set of all roots which can be written as −s+ r for s ∈ Σ, r ∈ R+. We are

now ready for our final definition in this section.
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Definition 1.3.2. Let g be a semisimple Lie algebra, h a Cartan subalgebra and Σ an

additively closed subset of the root system R. We define the parabolic subalgebra with

respect to Σ as

p(Σ) = h⊕
⊕

α∈T(Σ)

gα.

We of course have corresponding parabolic subgroups P(Σ) of the corresponding algebraic

group.

Thus, we conclude this section by noting that there is a one-to-one correspondence

between the subsets of the set of simple roots (or equivalently with subsets of nodes of the

Dynkin diagram) and the parabolic subgroups of a simple algebraic group G.

1.4 Application: TheGroupRepresentation to Line Bun-

dle Correspondence

In the first part of this section we recall the definitions of schemes and OX-modules and

finally, the definition of a line bundle. In the second part, we describe how, for homogeneous

spaces X = G/P, there is a one-to-one correspondence between (ample) line bundles L on

X and irreducible representations V of G. We will roughly follow [FH91].

1.4.1 Line Bundles

Definition 1.4.1. Let X be a topological space, and OX a sheaf of rings. We call (X,OX)

a ringed space. (X,OX) is a locally ringed space if for each p ∈ X, the stalk OX,p is a local

ring.

Definition 1.4.2. An affine scheme is a locally ringed space which is isomorphic to the

spectrum of some ring. A scheme is a locally ringed space (X,OX) such that for each p ∈ X

there exists a neighbourhood U ⊆ X such that (U,OX|U) is an affine scheme. We will often

call OX the structure sheaf of X. A morphism of schemes is a morhpism of locally ringed

spaces.

Definition 1.4.3. Let (X,OX) be a ringed space. We define an OX-module as a sheaf

of abelian groups F such that, for each U ⊆ X,F (U) is an OX(U)-module and F is
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compatible with the restriction maps of OX: if U ⊆ V ⊆ X then the diagram

OX(V)× F (V) F (V)

OX(U)× F (U) F (U)

(resV,U,resV,U) resV,U

commutes.

Definition 1.4.4. Let f : (X,OX) ! (Y,OY) be a morphism of ringed spaces. For an

OY -module G define the pullback of G as

f∗G := f−1G ⊗f−1OY
OX.

Definition 1.4.5. A free sheaf on a ringed space (X,OX) is an OX-module F such that

F ∼= O⊕I
X for some indexing set I. The cardinality of I is the rank of F .

A locally free sheaf is an OX-module which locally isomorphic to a free sheaf.

The most important type of sheaf that we need is the invertible sheaf, also known as

(albeit slightly informally) a line bundle.

Definition 1.4.6. A line bundle or invertible sheaf is a locally free sheaf of rank 1.

1.4.2 The Correspondence

Let G be a simple homogeneous algebraic group. Let V = Γλ be an irreducible represen-

tation of G with height weight λ. Consider the action of G on PV and let p ∈ PV be the

point corresponding to the eigenspace with eigenvalue λ.

Proposition 1.4.7. The orbit G.p is the (unique) closed orbit of the action of G on PV.

Proof. The point p is fixed by a Borel subgroup B such that Stab(p) = Pλ for Pλ parabolic.

So the orbit G/Pλ is compact and thus closed.

On the other hand, by Theorem 1.2.6, any closed orbit of G has a fixed point for the

action of B, but we defined p as the unique fixed point of B acting on PV.

We have shown that for any irreducible representation V of G there is a unique, closed

orbit X = G/P for the action of G on PV. Moreover, from a representation V we obtain a

homogeneous projective variety X and, by restricting the tautological line bundle on PV,
we obtain a line bundle L = OPV |X on X which is invariant under the action of G.

More generally, via the projection π : G/B ! G/P we can pull back each line bundle

L on X to a line bundle π∗L on G/B.
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1.5 Examples

There is a natural way to turn SLn(C) into a linear algebraic group.

Example 1.5.1. The group SLn(C) of determinant 1 matrices form an affine variety in the

following way: Let ∆ denote the determinant

∆(xij) = det


x11 · · · x1n

.

.

.

.
.
.

.

.

.

xn1 · · · xnn

 .

It is clear that this is a polynomial in the n2
variables xij. The affine subvariety

V(∆− 1) ⊂ An2

gives SLn(C) a variety structure.

Example 1.5.2. The group of upper triangular matrices Borel in SLn(C) is Borel. For this

choice of Borel subgroup, the maximal parabolic subgroups are of the form

Pd =


 ∗ ∗

0(n−d)×d ∗

 ∈ SLn(C)

 , 1 ⩽ d ⩽ n− 1.

More generally, let d = (d1, ..., dr) where 1 ⩽ d1 ⩽ · · · ⩽ dr ⩽ n − 1 for some

1 ⩽ r ⩽ n− 1. Then, a general parabolic subgroup of SLn(C) is of the form

Pd =

r⋂
i=1

Pdi
.

1.5.1 Grassmannians and Flag Varieties

Definition 1.5.3. Let V be a finite dimensional vector space of dimension n. A flag is a

sequence of nested subspaces of V,

V1 ⊂ · · · ⊂ Vr ⊂ V.

The signature of a flag is the tuple of dimensions σ = (dim(V1), . . . , dim(Vr)). If σ =

(1, . . . , n) we have a full flag.

Definition 1.5.4. Let V be a finite dimensional vector space of dimension n. The set of

flags of V, with signature (d1, . . . , dr) , denoted F(d1, . . . , dr, n) is called the flag variety

of V. We let F(n) denote the set of all flags of V. Finally, if each Vi in

V1 ⊂ · · · ⊂ Vr
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is the span of the first r basis vectors in the standard basis, F(1, . . . , r, n) is called the

standard flag.

We note that GLn(C) acts transitively on Fn, i.e. if g ∈ GLn(C) and x = V1 ⊂ · · · ⊂
Vr ∈ Fn then

g.x = gV1 ⊂ · · ·gVr.

Furthermore, let g be in the stabiliser of the standard flag, that is

gVi ⊂ Vi for all 1 ⩽ i ⩽ n.

More precisely, the i’th basis vector must land in the span of the e1, . . . , ei. We can see that

the standard flag is stabilised by elements of the form
x11 x11 · · · x1n

0 x22 · · · x2n
.
.
. 0

.
.
.

.

.

.

0 0 · · · xnn

 .

In other words, the standard flag is stabilised by the group of upper triangular matrices

which we will denote Bn(C). Using an induction argument, it is clear that Bn(C) is soluble.

Definition 1.5.5. Let V be an n-dimensional vector space. The Grassmannian G(k, V) =

G(k, n), is the set of k-dimensional subspaces of V . We can embed G(k, n) as a projective

variety into projective space via the Plücker embedding:

ρ : G(k, n) ↪−! P
(∧k

V
)
∼= P(

n
k)−1

W = Span({v1, . . . , vk}) 7−! v1 ∧ · · ·∧ vk.

Suppose we have a representation of SLn(C) in the form W =
∧k V, where V is the

standard representation, Proposition 1.4.7 tells us that the vectors {v1 ∧ · · ·∧ vk} form a

closed orbit in PW. Hence, we can embed SLn(C)/P into the Grassmannian.

Recall that F(d1, . . . , dr, n) is the flag of signature (d1, . . . , dr) in a vector space V of

dimension n. We can embed a flag variety into projective space as follows: The elements of

F(d1, . . . , dr, n) are of the form

Vd1
⊂ · · · ⊂ Vdr

where Vdi
is a vector space of dimension di. There is an embedding

φ : F(d1, . . . , dr, n) ↪−!
r∏

i=1

G(di, n)

Vd1
⊂ · · · ⊂ Vdr

7−! (Vd1
, . . . , Vdr

)
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into a product of Grassmannians. We can then use a product of Plücker embeddings

ρ(d1,...,dr) :

r∏
i=1

G(di, n) ↪−!
r∏

i=1

P
(∧di

V
)
∼=

r∏
i=1

P(
n
di
)−1

W1 × · · · ×Wr 7−! ∧d1W1 × · · · ×∧drWr.

Putting this all together we have a map

ρ(d1,...,dr) ◦φ : F(d1, . . . , dr, n) ↪−!
r∏

i=1

P(
n
di
)−1

.

So any flag variety can be embedded into projective space. Moreover, every G/P, can be

realised as a flag hence the following definition

Definition 1.5.6. A generalised flag variety is a smooth, projective homogeneous space

G/P which is full when P is Borel.



2The Matsumura-Oort Theorem

We wish to study the group of all automorphisms of a variety X, which we denote Aut(X).

An important case is X = Pn, for which it can be shown that

Aut(X) = PGLn+1(C).

Projective algebraic groups are automatically commutative if they are connected, hence

we have the following definition:

Definition 2.0.1. An abelian variety is a connected projective algebraic group.

Abelian varieties arise in many areas, for example in the Albanese variety which we will

treat in Chapter 3. Of course, the most famous type of abelian varieties are elliptic curves.

Furthermore, for any abelian variety, we have the following property of its automorphism

group.

Example 2.0.2. LetA be an abelian variety, G the group of automorphisms which preserve

the abelian structure of A and A(k) the group of translations of points in A. Then A is a

group extension of G by A(k). We obtain the sequence

1 ! A(k) ! Aut(A) ! G ! 1

which is exact.

2.1 The Automorphism Group of Pn

Showing that the automorphism group of Pn
is PGLn+1(C) is a surprisingly difficult task.

For this, we need the language of schemes and line bundles.
The most important line bundles for us is the following example. First, we borrow

some notation from [Vak24] by setting xj/i :=
xj

xi
thus, we may denote the affine open set

Ui ⊂ Pn
as

Ui = Spec

(C[x0/i, . . . , xn/i]

(xi/i − 1)

)
where xi/i is a “dummy variable.”

15
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Example 2.1.1. Let X = Pn. We define a line bundle OX(m) (we will use the shorthand

O(m)) via transition functions as follows: The transition function Ui to Uj is multiplica-

tion by xmi/j = x−m
j/i

. For m ⩾ 0 We have the following diagram:

C[x0/i, . . . , xn/i]/(xi/i − 1) C[x0/j, . . . , xn/j]/(xj/j − 1)

×x−m
j/i

×x−m
i/j

It is clear that O(m) = O(1)⊗m. If m < 0 we define O(m) = (O(1)⊗−m)∗. Of particu-

lar importance to us are the line bundles O(1) and O(−1) which are often referred to as

the Serre twisting sheaf and the tautological line bundle respectively.

We can quickly compute the global sections of O(m) as follows: let m ⩾ 0. Global

sections are polynomials f ∈ C[x0/i,...,xn/i]

(xi/i−1) and g ∈ C[x0/j,...,xn/j]

(xj/j−1) such that

f

(
x0/i, ...,

1

xi/j
, ..., xn/i

)
xmi/j = g(x0/j, ..., xn/j)

i.e. we need f
(
x0/i, ...,

1
xi/j

, ..., xn/i

)
xmi/j to be a polynomial, which only happens when

f(x0/i, ..., xn/i) is a polynomial of degree at mostm.The “sticks and stones” formula from

combinatorics tells us that f(x0/i, ..., xn/i) has

(
n+m
n

)
coefficients. Hence, we conclude

that

dim Γ(Pn,O(m)) =

(
n+m

n

)
.

For m < 0 it is clear that f cannot be polynomial, so O(m) has no non-zero global sections

and dim Γ(Pn,O(m)) = 0.

Remark 2.1.2. Note that the condition

f

(
x0/i, ...,

1

xi/j
, ..., xn/i

)
xmi/j = g(x0/j, ..., xn/j)

is independent of scaling.

It can be shown that these are in fact the only line bundles on Pn. Another important

fact is that the Picard group ofPn, (the group of invertible sheaves onPn
up to isomorphism)

Pic(Pn) is generated by O(1). Furthermore, Pic(Pn) ∼= Z.

Theorem 2.1.3. The automorphism group of Pn is PGLn+1(C)
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Proof. Suppose π : Pn ! Pn
is an automorphism. Note that π∗(O(1)) must be a line

bundle on Pn, hence, π induces an automorphism of Pic(Pn) with inverse (π−1)∗. Such

an automorphism must send the generator of Pic(Pn) to another generator. Since Z ∼=

Pic(Pn)has generators 1 and−1, π∗(O(1))must be either O(1) or O(−1).We have shown

above that O(−1) has no non-zero global sections, so we must have π∗(O(1)) = O(1).

Furthermore, out above calculations show that dim Γ(Pn,O(1)) = n + 1 and that the

global sections are determined up to scalars. Hence,

Aut(Pn) = PGLn+1(C).

2.2 The Automorphism Group of an Arbitrary Variety

For a scheme X, a family of automorphisms of X parameterized by a scheme S is an automor-

phism of the S-scheme X× S.

Remark 2.2.1. Suppose g is an automorphism of X× S then g satisfies the relation

g(x, s) = (f(x, s), x), for all x ∈ X, s ∈ S

where f : X× S ! S is a morphism of schemes such that for each fixed s ∈ S(C)

fs : X −! X

x 7−! f(x, s)

is an automorphism of X. The families of automorphisms of X paramaterised by S form a

group Aut(X× S/S).

We can move between families automorphisms of X paramaterised by a scheme S to

families paramaterised by another scheme S ′. Given g = f× idS ∈ Aut(X× S/S) and a

morphism of schemes u : S ′ ! S we have an induced map

g ′ : X× S ′ −! S ′

(x, s ′) 7−! (f(x, u(s ′)), s ′)

which is a family of automorphisms of X paramaterised by S ′, i.e. g ′ ∈ Aut(X× S ′/S ′).

Furthermore, pulling back u gives us the group homomorphism

u∗ : Aut(X× S/S) −! Aut(X× S ′/S ′)

g 7−! g ′.
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Definition 2.2.2. Let X be a scheme whose family of automorphisms is paramaterised by

S. The automorphism group functor is a contravariant functor from the category of schemes

to the category of groups defined as

AutX : Sch −! Grp

S 7−! Aut(X× S/S)

u 7−! u∗.

In order to understand Matsumura-Oort, we first want to expand our notion of al-

gebraic group. Firstly, we define an algebraic C-scheme as a scheme of finite type over C.

Furthermore, we let ∗ = MaxSpec(C), the set of maximal ideals of C.

Definition 2.2.3. Let G be an algebraic C-scheme and m : G×G ! G be a morphism of

schemes. We call the pair (G,m) an algebraic group scheme (which we may refer to simply

as an algebraic group) over C if there exist morphisms e : ∗ ! G and inv : G ! G such

that the following diagrams commute:

G×G×G G×G ∗ ×G G×G G× ∗

G×G G G

G G×G G

∗ G ∗

id×m

m×id m
∼=

e×id

m
∼=

id×e

m

(inv,id)

m

(id,inv)

e e

A locally algebraic group is a group scheme, locally of finite type.

Theorem 2.2.4 (Matsumura-Oort, [MO67]). If X is a proper scheme then the functor

AutX is represented by a locally algebraic group.

Corollary 2.2.5. If X is a connected projective variety then Aut(X) is a connected algebraic

group whose Lie algebra is Γ(X,TX).

Proof. Since X is projective, we have a closed immersion into Pn. Hence, X ! Pn
is

proper. Then, by the Valuative Criterion of Properness (see [Har77]) Pn
is proper over

Spec(C). Hence, the composition X ! Spec(C) is proper. So X is a proper scheme and

the Matsumura-Oort theorem tells us that AutX is represented by a locally algebraic group.

Hence, by [Bri18, p. 5], the automorphism group (scheme) of X, AutX, is a locally finite
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type group scheme. By [Sta24, Proposition 0B7R] we see that Aut
0
X is quasi-compact

and thus Aut
0
X is a finite type group scheme i.e. an algebraic group. As X is connected

Aut
0
X = AutX is an algebraic group. Furthermore, by [Bri18, p. 6], the Lie algebra of AutX

consists of derivations of the structure sheaf OX hence

Lie(Aut(X)) = Γ(X,TX).

https://stacks.math.columbia.edu/tag/0B7R


3The Borel-Remmert Theorem

In this chapter we will discuss a result by Borel and Remmert. The theorem holds for Kähler

manifolds, however we need not define this as every smooth complex projective variety is

a Kähler manifold. We will take X to be a homogeneous, connected, smooth projective

variety.

The goal of this chapter is to decompose X into an abelian variety and a rational (bira-

tional to Pn
) homogeneous variety. We will call such a decomposition the Borel-Remmert

decomposition of X and write

X ∼= A×G/P

for the decomposition.

Theorem 3.0.1 (Borel-Remmert,[BR62]). Let X be a connected, homogeneous and smooth

projective variety. Then X is isomorphic to the product A×G/P, where A is an abelian variety

and P parabolic.

3.1 Abelian Varieties

First, we need to set out a notion of the abelianisation of a variety. We do this by contructing

Albanese variety associated to a variety X. Named after Giacomo Albanese, we construct

the Albanese variety in the following way.

Definition 3.1.1. Let X be a variety with a basepoint. The Albanese variety, A(X), is

defined by the following universal property: There exists a morphism α : X ! A(X)

(of pointed varieties) called the Albanese map such that for any map of pointed varieties

f : X ! A where A is abelian, there exists a g : A(X) ! A such that the diagram

X A

A(X)

f

α
∃g

commutes.

20
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We can also describe the Albanese explicitly as follows: Suppose X ⊆ Pn
is a variety

with basepoint p then

A(X) = H0(X,Ω1
X)

∗/H1(X,Z).

Furthermore, if q ∈ X and µ ∈ H0(X,Ω1
X) we define the Albanese map α : X ! A(X)

via

q 7!

[
x 7!

∫q
p

x

]
where

∫q
p x is defined up to cycles H1(X,Z).

We will use without proof the following theorem by Chevalley, which gives abelian

varieties the structure of an algebraic group. A modern proof can be found in [Con02].

Theorem 3.1.2 (Chevalley’s Structure Theorem). Let G be an algebraic group, then there

exists a unique closed connected normal affine subgroup G
aff

⊆ G such that G/G
aff

is an

abelian variety. Moreover, A(G) = G/G
aff
.

3.2 Tangent Sheaves

There is a nice algebraic formulation of the tangent space at the identity of a connected

algebraic group.

Definition 3.2.1. Let G be a connected algebraic group, the tangent space at e, g := TeG,

is the Lie algebra of G. Furthermore, if X is a G-space g acts on X by vector fields. For

smooth varieties, we denote the tangent sheaf TX and have an induced morphism of Lie

algebras

opX : g −! Γ(X,TX)

ξ 7−! vξ

where vξ is the vector field induced by the action of G on X. Specifically, for each x ∈ X

vξ(x) =
d

dt

∣∣∣∣
t=0

(exp(−tξ)x).

It follows that we have a corresponding map on sheaves

opX : OX ⊗ g −! TX.

Consider the actionG×X ! XwhereX is a homogeneousG-space. By assumption the

group action is surjective so g1 = g2 if and only if g1x = g2x which gives us g−1
2 g1x = x,
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i.e. g1Gx = g2Gx. Now consider a map

φ : G/Gx −! X

gGx 7−! gx.

Note that φ is surjective by the transitivity of the action of G on X. Furthermore,

φ(g1Gx) = g1x

= g2x

= φ(g2Gx)

=⇒ g1G = g2G.

So φ is injective and moreover is an isomorphism of G-spaces.

Remark 3.2.2. For a homogeneous G-space X, we have an isomorphism of pointed G-

spaces (G/Gx, eGx) ∼= (X, x).

Recall that, by Mastumura-Oort, the Lie algebra of the automorphism group of a

projective variety is Γ(X,TX). We then have the following useful lemma.

Lemma 3.2.3 ([Bri12]). A connected projective variety X is homogeneous if and only if

opX : OX ⊗ Γ(X,TX) ! TX

is surjective.

Proof. For the forwards direction, suppse X is homogeneous and choose arbitrarily a base-

point x ∈ X. As X is homogeneous, the orbit map

φx : G −! X

g 7−! g.x

is surjective. Moreover, the differential of φx

dφx : g −! TxX

is also surjective. However, dφx is a map on stalks of TX. More precisely

φx =
(

opX

)
x
.

Since we picked x arbitrarily, it follows that opX is surjective.

For the converse, assume opX is surjective. Let G = Aut(X). Corollary 2.2.5 tells us

that g = Γ(X,TX). As opX is surjective, the induced map on stalks(
opX

)
x
: Γ(X,TX) ! TxX
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is surjective too. Hence, dφx is surjective for each x ∈ X, furthermore, φx is a submersion

whose image G · x is open in X. Since x is arbitrary and X is connected we conclude X is

homogeneous.

Lemma 3.2.4 ([Bri12]). If X is projective with trivial tangent bundle TX, then X is abelian.

Proof. Our previous lemma shows X is homogeneous, hence X is of the form G/H where

G = Aut(X) and H is the stabiliser of some point in X. Since TX is trivial, we have that

dim(X) = dim(Γ(X,TX)) = dim(g) = dim(G)

so H is finite and X is abelian. Furthermore, H acts trivially on X so H = {e}.

Lemma 3.2.5 ([Bri12]). Any connected algebraic group can be written as G = G
aff
Z(G)

3.3 A Proof of the Borel-Remmert Theorem

We are now ready to prove Theorem 3.0.1.

Proof of the Borel-Remmert Theorem. Let G = Aut(X). By Theorem 1.2.6 Z(G) has a

fixed point. Furthermore, Z(G) is a normal subgroup of G. Our previous arguments

show that, as X is homogeneous, Z(G) = {e}. Chevalley’s structure theorem tells us that

A := Z(G) is abelian and G
aff

∩A is finite.

The previous lemma tells us that

G
aff

×A −! G

(g, a) 7−! ga−1

is a surjective morphism of algebraic groups whose kernel is G
aff

∩A. Hence, G ∼= (G
aff

×

A)/K for some finite subgroup K ⊆ Z(G).

Theorem 1.2.6 again tells us that R(G
aff
) has a fixed point, so it acts trivially. Thus, we

may assume G
aff

is semisimple. By similar arguments Z(G
aff
) is trivial and G

aff
is adjoint.

We conclude that G
aff

∩A is trivial, i.e. K = {e}. Hence, G = G
aff

×A.

Matsumura-Oort tells us that for x ∈ X,Gx is affine and thus Gx ⊆ G
aff
. Since G/Gx

is complete, so is G/Gx and G
aff
/Gx. By Theorem 1.2.4 P := Gx is parabolic in G

aff
.

Finally, consider the projection map G
aff
×A ! G

aff
and its restriction π : Gx ! G

aff

whose kernel is A∩Gx. We note that A∩Gx is normal and this trivial. Since [π(Gx) : P] is
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finite andP is parabolic we know thatP is connected, equal to its normaliser andπ(Gx) = P.

Thus, Gx = P and we have shown that

X = G
aff
/P ×A.



4The Van de Ven Theorem

Van de Ven stated the following theorem: The only compact submanifolds with splitting

tangent sequence of the projective space are linear subspaces.

In 1958 Van de Ven published the proof of his theorem in [Ven58]. Since then many

proofs have been found. In this chapter we will present a proof by Mustaţă and Popa

([MP96]), published in 1996.

Definition 4.0.1. A short exact sequence is a sequence

0 ! A
f
↪! B

g
↠ C ! 0

such that imf = kerg.

Theorem 4.0.2 (The Van de Ven Theorem for Pn
). Let X be a smooth closed subvariety of

Pn. Let TX and NX|Pn be the tangent and normal bundle of X. Then the short exact sequence

0 ! TX ! TPn |X ! NX|Pn ! 0

splits if and only if X is a linear subvariety of Pn. Written explicitly, the above sequence is

isomorphic to the sequence

0 ! TX ! TX ⊕NX|Pn ! NX|Pn ! 0

that is, there exist morphisms f, i, π such that the diagram

0 TX TPn |X NX|Pn 0

0 TX TX ⊕NX|Pn NX|Pn 0

id f id

i π

commutes.

4.1 Preliminaries

Before we prove Theorem 4.0.2, we will first define some scheme-theoretic tools. These

tools are standard and are available in more detail in [Har77]. Our goal is to restate (1) in

terms of schemes and use their cohomological properties.

25
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Definition 4.1.1. Let f : (X,OX) and (Y,OY) be ringed spaces. Suppose that f : X ! Y is

a continuous map, define the direct image sheaf f∗OX on Y by f∗OX(V) = OX

(
f−1(V)

)
for all V ⊆ Y open.

Definition 4.1.2. Let X be a topological space and f : O1 ! O2 be a morphism of sheaves

of rings on X. Let F be an O2 module. An f-derivation into F is a map

D : O2 ! F

that annihilates im(f), is additive and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b.

We now introduce one of our main tools for the proof of Theorem 4.0.2, a global

analogue of an ideal of a ring. We are then able to express tangent bundles in terms of

sheaves.

Definition 4.1.3. Let X be a closed subscheme of Y, and let i : X ↪! Y be the inclusion

morphism. We have an induced map of sheaves

i# : OY ! i∗OX

whose kernel we call the ideal sheaf, IX of X. When the context is clear we will simply

write I for the sheaf of ideals. We call I /I 2
the conormal sheaf of X in Y and its dual

NX|Y = homOX
(I /I 2,OX) the normal sheaf of X in Y. Furthermore, we define the

first infinitesimal neighbourhood of X in Y to be X(1) := (X, i#(OY)/I 2).

Note that X is a closed subscheme of X(1), so there is a cannonical inclusion map

X ↪! X(1)
corresponding to the projection map of sheaves.

Now that we have the tools we need, we are ready to approach Van de Ven. We first

rephrase the statement to be about the splitting in the language of sheaves, that is if the

sequence

0 ! TX ! TPn |X ! NX|Pn ! 0 (1)

splits then X is a linear subvariety of Pn. Dualising gives us the sequence

0 ! N ∨
X|Pn ! Ω1

Pn|X ! Ω1
X ! 0, (2)

where Ω1
X is the cotangent sheaf on X. From now on we will use the terms (co)tangent

bundle and (co)tangent sheaf interchangably.

We will take without proof that (2) is short exact (thus so is (1)). A proof can be found

in [Vak24, Section 21.2.]

A well known and important theorem is the exactness of the Euler sequence. We will

use the result without proof, as it is a standard result. Proofs of different flavours can be

found in [Har77] and [Vak24].
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Theorem 4.1.4 (The Euler Exact Sequenece). The cotangent bundle Ω1
Pn satisfies the

following exact sequence

0 −! Ω1
Pn −! OPn(−1)⊕(n+1) −! OPn −! 0.

The Euler sequence gives us a more concrete grasp on the cotangent bundle of Pn. We

will be use it directly to prove Van de Ven’s theorem for the case dim(X) = 1.

The final piece of setup we need are some properties relating to the (algebraic) group

of invertible sheaves, the Picard group Pic(X) ∼= H1(X,O∗
X). Firstly, we introduce the

Néron-Severi group.

Definition 4.1.5. Let Pic
0(X)be the subgroup of Pic(X) consisting of divisors algebraically

equivalent to 0. We define that Néron-Severi group as NS(X) := Pic(X)/Pic
0(X).

Theorem 4.1.6. There exists an injective map

NS(X)⊗Z C −! H1(X,Ω1
X).

Proof. The exponential sequnce

0 ! Z ! OX ! O∗
X ! 1

induces a long exact piece

· · · ! H1(X,OX) ! Pic(X)
c1−! H2(X,Z) · · ·

Here c1 is the first Chern class map which identifies a line bundle with its first chern class.

It is well known that im(c1) is the Néron-Severi group since ker(c1) = Pic
0(X) where

Pic
0(X) is the subgroup of divisors algebraically equivalent to zero. Furthermore,

im(c1) = H(1,1)(X) ∩H2(X,Z)

so NS(X) is a discrete subgroup of H(1,1)(X). Finally, by Dolbeault’s theorem

H(1,1)(X) ∼= H1(X,Ω1
X)

so by tensoring with C we obtain an injective map

NS(X)⊗Z C ↪! H1(X,Ω1
X).
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4.2 Setup

Our first lemma is this section is the bread and butter of our proof. Our arguments on the

first infinitesimal neighbourhood show us that, in order for the cotangent sequence to split,

the first order approximations of Pn
and X must coincide for some neighbourhood of X.

Lemma 4.2.1. The morphism δ in the exact sequence of sheaves

0 ! I /I 2 δ
−! Ω1

Y|X ! Ω1
X ! 0

admits a left inverse if and only if the inclusion i : X ↪! X(1) admits a retraction (a left

inverse).

Proof. We begin by simplifying each direction in the proof. Let π : OY/I 2 ! OY/I

denote the cannonical projection map on quotients. The existence of a retract of i is

equivalent to the existence of a ring homomorphism θ such that π ◦ θ = idOY/I .

However, the existence of a left inverse of δ is equivalent to the existence of a derivation

D : OY ! I /I 2
such that D|I = p where p is the projection map I ! I /I 2.

We are now ready to prove the lemma. Let q : OY ! OY/I 2
be the cannonical

projection. Suppose we have a derivationD such thatD|I = p.Define θ : OY ! OY/I 2

as θ = q−D. We evaluate θ at I to obtain

θ(I ) = q(I ) −D(I ) = q(I ) − p(I ) = I /I 2 − I /I 2 = 0OY/I 2 .

Thus, θ factors through OY/I ! OY/I 2, call this map θ. We then see that π ◦ θ =

idOY/I . For the other direction, given θ we obtain D = θ− q.

We can now prove one direction (the much easier direction) of Van de Ven’s theorem.

The proof is rather short since Pn
has a linear structure and so will any Pr

embedded

linearly.

Theorem 4.2.2. Suppose X ⊆ Pn be an r-dimensional linear subspace. Then, the sequence

0 ! N ∨
X|Pn ! Ω1

Pn|X ! Ω1
X ! 0

splits.

Proof. Let X ′ ⊆ Pn
be an (n− r− 1)-dimensional subspace such that X ∩ X ′ = ∅ and

let U = Pn \ X ′
and π denote the projection U ! X. It is clear that

X ⊆ X(1) ⊆ U

and that π|X(1) is the retract of i : X ↪! X(1). By Lemma 4.2.1 the sequence splits.
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Lemma 4.2.3. LetL be a linear subspace ofPn such thatX ⊆ L ⊆ Pn.We have the following

commutative diagram of vector bundles.

0 N ∨
X|Pn Ω1

Pn |X Ω1
X 0

0 N ∨
X|L Ω1

L|X Ω1
X 0

Suppose that the top sequence splits, then so does the bottom sequence.

Proof. Firstly, note that the vertical maps are restriction maps induced by the inclusion

L ⊆ Pn. If the top sequence splits, we have the following diagram

0 N ∨
X|Pn N ∨

X|Pn ⊕Ω1
X Ω1

X 0

0 N ∨
X|Pn Ω1

Pn |X Ω1
X 0

0 N ∨
X|L Ω1

L|X Ω1
X 0

0 N ∨
X|L N ∨

X|L ⊕Ω1
X Ω1

X 0

∼=

∃∼=

The isomorphism we want to show exists must make the diagram commute. Of course,

we can see such an isomorphism exists by applying the restriction map N ∨
X|Pn ⊕Ω1

X !

N ∨
X|L ⊕Ω1

X.

Lemma 4.2.4. If (2) splits, X ⊆ Pn and dim(X) ⩾ 2 then

H1(X,I /I 2) = 0.

Proof. As (2) splits, we have H1(X,Ω1
Pn |X) = H1(X,I /I 2) ⊕ H1(X,Ω1

X), so it is

enough to show that h1(X,Ω1
Pn |X) ⩽ h1(X,Ω1

X). By restricting the twisted Euler se-

quence

0 ! Ω1
Pn ! OPn(−1)⊕(n+1) ! OPn ! 0

to X, we obtain the restricted twisted Euler sequence

0 ! ΩPn |X ! OX(−1)⊕(n+1) ! OX ! 0.



4 The Van de Ven Theorem 30

Taking cohomology gives us the long exact sequence

0 H0(X,Ω1
Pn |X) H0(X,OX(−1)⊕(n+1)) H0(X,OX) · · ·

· · · H1(X,Ω1
Pn |X) H1(X,OX(−1)⊕(n+1)) H1(X,OX) · · ·

Of course H0(X,OX) = C. Furthermore, as OX(−1) ∼= OX(1)
∗, we have

H1(X,OX(−1)⊕(n+1)) ∼=
(
H1(X,OX(1)

∗)
)n+1

which by Kodaira’s vanishing theorem with dim(X) = 2 and L −1 = OX(1)
∗

is zero.

Hence, h1(X,Ω1
Pn |X) = 1. By Theorem 4.1.6, we have an injective map

α : NS(X)⊗Z C ↪! H1(X,Ω1
X)

thus h1(X,Ω1
X) ⩾ 1.

Example 4.2.5. Embed P1
into P2

via OP1(2). Written precisely, we have a map

v2 : P1
[x:y] −! P(Γ(P1,OP1(2)) = P2

[z0:z1:z2]

[x : y] 7−! [x2 : xy : y2]

namely the Veronese embedding. Note that v2 is a degree 2 map which is an isomorphism

onto its image. Furthermore, im(v2) = V(z0z2−z21)which is a plane conic. The cotangent

sequence is thus

0 ! I /I 2 ! Ω1
P2 |P1 ! OP1(2) ! 0.

Assume for contradiction that the cotangent sequence splits. The Euler sequence for P2
is

0 ! Ω1
P2 ! OP2(−1)⊕3 ! OP2 ! 0.

Restricting to P1
gives us

0 ! Ω1
P2 |P1 ! OP1(−1)⊕3 ! OP1 ! 0.

Now we twist the above sequence by 2 and obtain

0 ! Ω1
P2 |P1(2) ! O⊕3

P1 ! OP1(2) ! 0.

We have an induced long exact sequence on cohomology

0 ! H0(P1,Ω1
P2 |P1(2)) ! H0(P1,O⊕3

P1 ) ! H0(P1,OP1(2)) ! · · ·
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Since H0(P1,O⊕3
P1 ) ! H0(P1,O1

P (2)) is an isomorphism we have

H0(P1,Ω1
P2 |P1(2)) = 0

which contradicts the existence of a right inverse for the map Ω1
P2 |P1 ! OP1(2). Hence,

the (co)tangent sequence does not split.

4.3 Proof of the Van de Ven problem for Pn

Proof of the Van de Ven Problem on Pn for dim(X) ⩾ 2. By Theorem 4.2.2 we can take X

to be nondegenerate, that is if X embedds into Pn, X is not contained in any hyperplane.

Our aim is to show that X = Pn.

Firstly, we show that H0(X,I /I 2) = 0. We obtain the restricted twisted Euler

sequence

0 ! Ω1
Pn |X(1) ! O⊕(n+1)

X ! OX(1) ! 0

which induces the cohomological chain

0 ! H0(X,Ω1
Pn |X(1)) ! H0(X,O⊕(n+1)

X ) ! H0(X,OX(1)) ! · · ·

Note that H0(Pn,On+1
Pn ) ∼= Cn ∼= H0(X,On+1

X ). Furthermore, the map

H0(Pn,OPn(1)) −! H0(X,OX(1))

is injective by the nondegeneration of X. Thus, H0
(
X,Ω1

Pn |X(1)
)
= 0, which by the

splitting of (2) yields H0(X,I /I 2(1)) = 0.

By Lemma 4.2.1 there exists a morphism r : X(1) ! X such that r ◦ i = id. Let L :=

r∗OX(1) be the pullback of the retract of OX(1). By Lemma 4.2.4 H1(X,I /I 2) = 0

and thus the map i∗ : H1
(
X(1),OX(1)

)
! H1(X,O∗

X) is injective. Recall that Pic(X) is

the group of isomorphism classes of line bundles, and we obtain the equivalent injective

map

i∗ : Pic(X(1)) ! Pic(X).

As r ◦ i = id we have i∗ ◦ r∗ = id so

i∗L = i∗r∗OX(1) = OX(1).

Additionally, pulling back OX(1)(1) along the cannonical inclusion gives i∗OX(1)(1) ∼=

OX(1), and we obtain the isomorphism

L ∼= OX(1)(1).
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Since each side of the above isomorphism differ only by multiplication by a nonzero constant

we can take L = OX(1)(1).

We showed above that H0(X,I /I 2) = 0, so the map

i∗ : H0(X(1),OX(1)(1)) ! H0(X,OX(1))

is injective. Furthermore, since i∗ ◦ r∗ = id, the composition

H0(X,OX(1))
r∗
−! H0(X(1),OX(1)(1))

i∗
−! H0(X,OX(1))

is the identity so i∗ and r∗ are isomorphisms. We hence have the following commutative

diagram

X(1) P(H0(X(1),OX(1)(1))∗)

X P(H0(X,OX(1))
∗)

r ∼= s

where s is the isomorphism induced by r∗. Hence, r is an immersion and I = 0. We

conclude that X = Pn.

It remains only to prove the Van de Ven problem in the case dim(X) = 1.We will follow

the ideas of Laksov in [Lak81].

Proof of the case dim(X) = 1. Let X be a non-degenerate curve in Pn
. Since TPn is ample,

[Har66, Proposition (4.1)] gives us the restricted bundle TPn |X is ample too. Assume for

contradiction (1) splits TPn |X ∼= TX ⊕NX|Pn , by [Har66, Proposition (2.2)] each direct

summand of TPn |X we get TX is an ample line bundle.

Laksov [Lak81] shows that this implies X is rational, hence we can take X = P1 ⊆ Pn

as a degree d ⩾ 2 embedding. We then have the following standard commutative diagram:

0 0

0 I /I 2 Ω1
Pn |P1 Ω1

P1 = OP1(−2) 0

0 I /I 2 OP1(−d)⊕(n+1) E 0

OP1 OP1

0 0
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which defines a rank two vector bundle E ∼= OP1(a1) ⊕ OP1(a2), a1, a2 ∈ Z on X. As

the top row splits we have a map

(I /I 2 ⊕ OP1(−2)) −! OPn(−d)⊕(n+1)

in particular an inclusion

OP1(−2) ↪! OP1(−d)⊕(n+1).

Twisting the inclusion by 2, we obtain

OP1 ↪! OPn(−d+ 2)⊕(n+1).

As OP1 has global sections, OPn(−d + 2)⊕(n+1)
must do too. Hence, −d + 2 ⩾ 0 so

d ⩽ 2. However, since we assumed d ⩾ 2, we obtain d = 2. Thus, X is a rational curve of

degree 2, which must be a plane conic. From here the proof is the same as in Example 4.2.5:

Twisting the restricted Euler sequence by 2 gives us

0 ! Ω1
P2 |P1(2) ! O3

P1 ! OP1(2) ! 0.

We then have the long exact sequence on cohomology:

0 ! H0(P1,Ω1
P2 |P1(2)) ! H0(P1,O3

P1) ! H0(P1,OP1(2)) ! · · ·

Of course,

H0(P1,O3
P1) ∼= H0(P1,OP1(2))

so H0(P1,Ω1
P2 |P1(2)) = 0, which contradicts the existence of a right inverse for the

morphism Ω1
P2 |P1 ! OP1(−2).



5Concluding Remarks

The Van de Ven problem for Pn
is well documented and has many proofs. Likewise, the

Borel-Remmert theorem has a few proofs e.g. the one covered in this dissertation and one

in [Akh95]. However, the Matsumura-Oort theorem, from what the author has gathered,

has seldom one proof with the exception of a sketch of the theorem for the case when X is

projective by Brion in [Bri18].

Others have worked on the Van de Ven problem for other varieties. Namely, the Grass-

mannian variety and quadric hypersurfaces. We did do not have enough time to talk about

those here but Jahnke has an excellent exposition in [Jah05].

On another note, the Van de Ven problem for the fundamental representations of the

exceptional Lie group G2 is only partially solved. One representation is realised as a quadric

hypersurface and thus is covered in [Jah05]. The other fundamental representation, the

adjoint one, is a more complicated space. It is the intersection of a few quadrics, for details

see [Pro07]. The Van de Ven problem is currently unknown for the adjoint representation

of G2.
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